LCLELULEE

PA-28-140

Owner's Handbook

Piper Aircraft Corporation, Vero Beach, Florida U.S. A.

If a non-conformity of information should exist between this manual and the FAA Approved Flight Manual, the Flight Manual shall be considered the authority.

Additional copies of this manual, Part No. 753584 , may be obtained from your Piper Dealer.


```
    N4511R
sarial + 28-21212
    grose werght 2150
```


SECTION I

``` SPECIFICATION FEATURES
```


PRFORMANCE

The gross weight of 1950 pounds in the following performance charts applies to Serial Nos. 28-20000 to 28-20939, unless the airplane has been modified to 2150 pounds gross weight. All airplanes from Serial Nos. 28-20940 and up have been licensed from the factory at 2150 pounds gross weight

Performance figures are for standard airplanes flown at gross weight undex standard conditions at sea level, or stated altitude. Any deviation from Standard equipment may result in changes in performance.

*When Fenders Installed
**With 50 gal . Reserve Fuel
 PERFORMANCE

THE PIPER CHEROKEE
SECTION I

SPECIFICATION FEATURES: (cont)		
GROSS WEIGHTS		
FUEL AND OIL		
Fuel Capacity (gal.) Standard		
Fuel Capacity (gal.) Reserve		
Oil Capacity (qts.)		
Fuel Aviation Grade (Octane)		

BAGGAGE

Maximum Baggage (lbs.)	100	$200^{* * *}$
Baggage Space (cubic ft.)	22	22
DIMENSIONS		
Wing Span (ft.)	30	30
Wing Area (sq. ft.)	160	160
Wing Loading (lbs. per sq. ft.)	12.2	13.4
Length (ft.)	23.3	23.3
Height (ft.)	7.3	7.3
Power Loading (lbs. per HP)	13.9	14.3

LANDING GEAR

Wheel Base (ft.)		6.2	6.2
Wheel Tread (ft.)		10.0	10.0
Tire Pressure (lbs.)	Nose	24	24
	Main	24	24

***Except when family seat and safety belts are installed, 340 lbs. is permitted.

SECTION II DESIGN INFORMATION

Engine and Propeller 5
Structures 6
Landing Gear 6
Control System 7
Fuel System 8
Electrical System 9
Heating and Ventilating System 10
Cabin Features 12

SECTION 11

DESIGN INFORMATION

ENGINE AND PROPELLER

The Lycoming O-320-E2A engine installed in the Cherokee PA-28-140 is rated at 140 horsepower at 2450 rpm or 150 horsepower at 2700 rpm**. This engine has a compression ratio of 7 to 1 and requires $80 / 87$ minimum octane fuel. The cngine is equipped with a geared starter, a 35 ampere alternator, dual magnetos, vacuum pump drive, a diaphragm-type fuel pump and a float carburetor

Exhaust gases are carried through a system constructed of heavy gauge stainless steel which incorpurates a heater shroud, to provide cabin heat and carburetor deicing.

The propeller used on the PA-28-140 is a Sensenich M74DM fixed-pitch aluminum alloy mit. Its diameter is 74 inches with a standard pitch of 60^{*} inches. All performance figures are based on the standard $60 *$ inch pitch propeller.

Cowling on the Cherokee is designed to cool the engine in all normal flight conditions, including protracted climb, without the use of cowl flaps or cooling flanges.

The throttle is of the push-pull type and is located in the lower center of the instrument panel. A knurled friction lock is provided to prevent creeping of the throttle from any desired position. The mixture control, located in the lower right hand side of the instrument pancl, is a push-pull control like the throttle. The full rich position is obtained when the control is full forward, while the full aft position provides an idle cut-off
*58 inch pitch propellers when gross weight is 2150 .
**When gross weight is 2150
for stopping the engine. Intermediate positions are used for leaning the mixture at altitudes above sea-level. The carburetor heat control, located to the left of the throttle, provides maximum carburetor heat when pulled to its full aft position. With carburetor heat off, all engine air passes through a highefficiency dry-type filter. Therefore, prolonged ground operation with carburetor heat "ON" should be avoided, particularly on unimproved fields as the air is not filtered.

STRUCTURES

All structures are of aluminum alloy construction and are designed to ultimate load factors well in excess of normal requirements. All exterior surfaces are primed with etching primer and painted with acrylic enamel.

The wings are attached to each side of the fuselage by inserting the butt ends of the xespective main spars into a spar bor carry through which is an integral part of the fuselage structure, providing, in effect, a continuous main spar with splices at each side of the fuselage. There are also fore and aft attachments at the rear spar and at an auxiliary front spar.

The wing airfoil section is a taminar flow type, NACA $65_{2}-415$ with the maximum thickness about 40% aft of the leading edge. This permits the main spar carry through structure to be located under the rear seat providing unobstructed cabin floor space ahead of the rear seat.

LANDING GEAR

The three landing gears use a Cleveland 600×6 wheel, the main wheels being provided with brake drums and Cleveland single dischydraulic brake assemblies. The nose wheel and the
main gear both use 600×6 four ply tires. All the tires have tubes.

The nose gear is steerable through a 30 degree arc each side of neutral by use of the rudder pedals. A spring device is incorporated in the rudder pedal torque tube assembly to aid in rudder centering and to provide rudder trim. The nose gear steering mechanism also incorporates a hydraulic shimmy dampener.

The oleo struts are of theair-oil type with normal extension being 3.25 inches for the nose gear and 4.50 inches for the main gear under normal static (empty weight of airplane plus full fuel and oil) load.

The brakes are actuated by a hand lever and master cylinder, which is located below and behind the left center of the instrument sub-panel. The brake fluid reservoir is installed on the top left front face of the firewall. The parking brake is incorporated in the master cylinder and is actuated by pulling back on the brake lever, depressing the knob attached to the left side of the handle and then releasing the brake lever. To release the parking brake, pull back on the brake lever to disengage the catch mechanism and allow the handle to swing forward.

CONTROL SYSTEM

Dual controls are provided as standard equipment with a cable system used between the controls and the surfaces. The horizontal tail is of the all movable slab type, with an anti-servo tab which also acts as a longitudinal trim tab, actuated by a control on the cabin ceiling. The stabilator provides extra stability and controllability with less size, drag, and weight than conventional tail surfaces. The ailerons are provided with a differential action which tends to eliminate adverse yaw in turning maneuvers and also reduces the amount of coordination
required in normal turns.
The flaps are manually operated, balanced for light operating forces and spring loaded to turn to the up position. A past-center lock incorporated in the actuating linkage holds the flap when it is in the up position so that it may be used as a step on the right side. The flap will not support a step load except when in the full up position, so it must be completely retracted when used as a step. The flaps have three extended positions, 10,25 and 40 degrees.

FUEL SYSTEM

Fuel is stored in two twenty-five gallon tanks which are secured to the leading edge structure of each wing by screws and nut plates. This allows easy removal for service or inspection.

The standard quantity of fuel is 36 gallons for the Cherokee 140. To obtain the standard quantity of fuel, fill the tanks to the bottom of the filler neck indicator. ((abo)

An auxiliary electric fuel pump is provided for use in case of failure of the engine driven pump. The electric pump should be on for all take-offs and landings.

The fuel strainer, which is equipped with a quick drain, is located on the front lower left comer of the firewall. This strainer should be drained regularly to check for water or sediment accumulation. To drain the lines from the tanks,
the tank selector valve must be switched to each tank in turn, with the electric pump on, and the gascolator drain valve opened. Each tank has an individual quick drain located at the bottom, inboard, rear corner.

Fuel quantity and pressure are indicated on gauges located in the engine gauge cluster on the right side of the instrument panel.

ELECTRICAL SYSTEM

The Cherokee is equipped with the Piper F.T.P. (Full Time Power) Electrical System. Its 12 volt alternator provides electrical power at all engine speeds and results in improved performance for radio and electrical equipment and longer battery life.

In addition to the alternator, the electrical system includes a 25 ampere-hour battery, a voltage regulator and a master switch relay. The battexy and relay are mounted beneath the baggage compartment floor. Access for service or inspection is obtained by raising the hinged baggage compartment floor panel. The battery box is designed to accommodate a larger capacity battery for extreme cold weather operation.

Electrical switches, fuses and fuse spares are located on the lower left side of the instrument panel.

Standardelectricalaccessories, in addition to those already listed, include a starter, stall warning indicator, cigar lighter and ammeter. Navigation lights, anti-collision light, landing light, instrument lighting and a cabin dome light are offered as optional acces-

sories.
Circuit provisions are made to handle optional communications and navigational equipment.

In conventional generator systems, the ammeter indicates battery discharge. In the Piper Full Time Power electrical sys tem, the ammeter displays the load in amperes placed on the system at any given time. With all electricalequipment except the master switch in the "OFF" position, the ammeter will indicate the amount of charging current demanded by the battery. This amount will vary and depends on the percentage of full charge on the battery at the time. When the battery becomes charged, the current displaced on the ammeter will reduce to a minimum value of about two amperes. As each unit of electrical equipment is switched on the amount of curreat it draws will be shown on the ammeter. The maximum continuous load for night flight with all equipment on is approximately thirty amperes. This thirty amperes plus approximatelytwo amperes for the fully charged battery will appear continuously under these flight conditions.

Because of the mechanical simplicity of the alternator, maintenance should prove to be a minor factor as compared to previous systems. Should service be required, contact your local Piper dealer.

HEATING AND VENTILATING SYSTEM

Heat for the cabin interior and the defroster system is provided by a heater muff attached to the exhaust system. Controls for these systems are located on the lower right hand side of the instrument panel. A third control in this area regulates a large fresh air vent located on the left hand side of the cabin near the pilot's feet. In addition, two side vents are provided, one at each seat iocation. They may be independently regulated as desired by the seat occupant.

CABIN FEATURES

The instrument panel of the Cherokee is designed to accommodate the customary advanced flight instruments and all the normally required power plant instruments. The Artificial Horizon, Directional Gyro and the Turn and Bank instruments are vacuum operated through use of a vacuum pump installed on the engine. A natural separation of the flight group and the power group is provided by placing the communications and radio navigational equipment in the center of the panel.

The front seats are adjustable fore and aft for pilot comfort and ease of entry and exit. A family seat installation is available which provides twoadditional seats. Eachfamily seat is capable of carrying a full size adult which gives the Che rokee 140, 4-place capability.

family seats

1. Compass
2. Airspeed Indicator
3. Directional Gyro Indicator
4. Gyro Horizon Indicator
5. Radio ADF
6. Radio VHF
7. Tachometer
8. Vacuum Gauge
9. Instrument Cluster
10. Turn and Bank Indicator 11. Clock
11. Stall Warning Light
12. Altimetex
13. Rate of Climb Indicator

650630

SECTION III OPERATING INSTRUCTIONS

Preflight 13
Starting 14
Warm-up 15
Ground Check 16
Take-off 16
Climb 17
Stalls 17
Cruising 17
Approach and Landing 18
Ground Handling and Mooring 19
Weight and Balance 19

SECTION III

OPERATING INSTRUCTIONS

PREFLIGHT

The airplane should be given a thorough visual inspection prior to each flight. Particular attention should be given to the following items in the illustration below:

1. a. Master switeh "ON."
b. Check fuel quantity indicators (two tanks).
c. Master switch and ignition "OFF."
2. a. Check for external damage, operational interference

661201
of control surfaces or hinges.
b. Iasure that wings and control surfaces are free of snow, ice or frost.
3. a. Visually check fuel supply, secure caps.
b. Drain fuel tank sumps.
c. Check that fuel system vents are open.
4. a. Check landing gear shock struts for proper inflation.
b. Check tires for cuts, wear and proper inflation.
5. a. Inspect windshield for cleanliness.
b. Check the propeller and spinner for defects or nicks.
c. Check for obvious fuel or oil leaks.
d. Check oil level, 8 quarts maximum. (Insure dipstick is properly seated.)
e. Laspect cowling and inspection covers for security.
f. Check nose wheel tire for inflation, wear.
g. Gheck nose wheel shock strut for proper inflation. 6. a. Stow tow bar and control locks, if used.
b. Check baggage for proper storage and security.
c. Close and secure the baggage compartment door. 7. a. Upon entering aircraft ascertain that all primary flight controls operate properly.
b. Close and secure the cabin door.
c. Check that required papers are in order and in the airctaft.

STARTING ENGINE

After completion of the preflight inspection:

1. Lock the wheel brakes.
2. Set the carburetor heat control in the full "COLD" position.
3. Select the desired tank with the fuel valve.
4. Move the mixture to the full "RICH" position.
5. Open the throttle $1 / 8$ to $1 / 4$ inch.
6. Turn the electric fuel pump "ON."

In cold weather (below 40 degrees F.) prime the engine with one to three full strokes of the priming pump. If extremely cold, starting will be aided by pulling the propeller through by hand (switch "OFF") four to five revolutions. If the temperature is above 40 degrees the engine may be primed by three or four short quick strokes of the throttle.

After priming, turn the electric master switch on, engage the starter and allow the engine to turn approximately one full revolution, then turn the ignition switch to the "Left" magneto position.

When the engine is firing evenly, turn the magneto switch to the "Both" position and advance the throttle to 800 RPM. Check the oil pressure gauge for a pressure indication. If oil pressure is not indicated within thirty seconds, stop the engine and determine the trouble.

If the engine fails to start at the first attempt, another attempt should be made without priming. If this fails, it is possible that the engine is ovexprimed. Turn the magneto switch off, open the throttle slowly, and rotate the engine approximately ten revolutions with the starter. Reprime the engine with one half the amount used in the initial attempt, turn the magneto switch to "Left," and repeat the starting procedure. If the eugine again fails to start, refer to the "Lycoming Operating Handbook, Section VII, Engine Troubles."

WARM-UP

As soon as the engine starts, the oil pressure should be checked. If no pressure is indicated within thirty seconds, stop the engine and determine the trouble. In cold weather it will take a few seconds longer to get an oil pressure indication. Warm-up the engine at 800 to 1200 RPM .

Take-off may be made as soon as ground check is completed, providing that the throttle may be opened fully without back firing or skipping, and without reduction in engine oil pressure.

GROUND CHECK

With the engine running at 1800 RPM, switch from both magnetos to only one and note the RPM loss; switch to the other magneto and again note the RPM loss. Drop off on either magneto should not exceed 125 RPM.

Check both the oil temperature and pressure. The temperature may be low for some time if the engine is being run for the first time of the day, but as long as the pressure is within limits the engine is ready for take-off.

Carburetor heat should also be checked prior to take-off to be sure that the control is operating properly and to clear any ice which may have formed during taxiing.

TAKE-OFF

Just before take-off the following items should be checked:
$\begin{array}{ll}\text { 1. Controls free } & \text { 6. Fuel on proper tank }\end{array}$
6. Fuel on proper tank
2. Flaps "UP"
7. Electric fuel pump "ON"
3. Tab set
8. Engine gauges normal
4. Mixture "RICH"
9. Door latched
5. Carburetor heat "OFF"
10. Altimeter set

The take-off technique is conventional for the Cherokee. The tab should be set slightly aft of neutral, with the exact setting determined by the loading of the aircraft. Allow the airplane to accelerate to 50 to 60 miles per hour, then ease back on the wheel enough to let the airplane fly itself off the ground. Premature raising of the nose, or raising it to an excessive angle, will result in a delayed take-off. After takeoff let the aircraft accelerate to the desired climb speed by lowering the nose slightly.

Take-offs are normally made with flaps up, to simplify operating procedure. However, for short field take-offs, and for take-offs under difficult conditions such as in deep grass
or on a soft surface, distances can be reduced appreciably by lowering flaps to 25° (second notch).

CLIMB

The best rate of climb at gross weight will be obtained at $V Y=85$ miles pex hour. The best angle of climb may be obtained at $f=74$ miles per hour. At lighter than gross weight these speeds are reduced somewhat. For climbing enroute a speed of 100. miles per hour is recommended. This will produce better foxward speed and increased visibility over the nose during the climb.
STALLS VSO-52-54 VS-63
Stall characteristics of the Cherokee are conventional. Visual stall warning is provided by a red light located on the left side of the instrument panel which is turned on automatically between 5 and 10 miles per hour above stall speed. Gross weight stalling speed with power off and full flaps is 52 miles per hour at 1950 pounds and 54 miles per bour at 2150 pounds. With flaps up this speed is increased 9 miles per hour.

Intentional spins are prohibited in the normal category airplane. For approved maneuvers and entry speeds refer to the Flight Manual.

CRUISING

The cruising speed of the Cherokee is determined by many factors including power setting, altitude, temperature, loading, and equipment installed on the airplane.

The normal cruising power is 75% of the rated horsepower of the engine. True airspeeds, which may be obtained at various altitudes and power settings, can be determined from the charts in "Section IV" of this handbook.

Use of the mixture control in cruising flight reduces fuel consumption significantly, especially at high altitudes. The mixture should always be leaned during cruising operations at

75\% power or less, but during the climb only at altitudes above 5000 feet.

The continuous use of carburetor heat during cruising flight decreases engine efficiency. Unless icing conditions in the carburetor are severe, do not cruise with the heat on. Apply full carburetor heat slowly and only for a few seconds at intervals determined by icing severity.

In order to keep the airplane in best lateral trim during cruising flight, the fuel should be used alternately from each main tank. It is recommended that one maiu tank be used for one hour aftex take-off; the other main tank used until nearly exhausted, then return to the first main tank.

MANEUVERS

The airplane is approved for certain aerobatic maneuvers up to a gross weight of 1950 lbs ., provided it is loaded within the approved weight and center of gravity limits. (See Airplane Flight Manual) The maneuvers are spins, steep turns, lazy eights and chandelles.

APPROACH AND LANDING

The airplane should be trimmed to an approach speed of about 85 miles per hour with flaps up. The flaps can be lowered at speeds up to 115 miles per hour, if desired, and if approach speed is reduced 3 miles per hour for each additional notch of flap. Carburetor heat should not be applied unless there is an indication of carburetor icing, since the use of carburetor heat causes a reduction in power which may be critical in case of a go-around. Full throttle operation with heat on is likely to cause detonation.

The amount of flap used during landings and the speed of the aircraft at contact with the runway should be varied according to the landing surface and existing conditions, both windwise and loadwise. It is generally good practice to contact the ground at the minimum possible safe speed consistent with existing conditions.

Normally, the best technique for short and slow landings is to use full flap and enough power to maintain the desired airspeed and approach flight path. Mixture should be full rich, fuel on the fullest tank, carburetor heat off, and electric fuel pump on. Reduce the speed during the flareout and contact the ground close to the stalling speed (55 to 65 MPH). After ground contact hold the nose wheel off as long as possible. As the airplane slows down, drop the nose and apply the brakes. There will be less chance of skidding the tires if the flaps are retracted before applying the brakes. Braking is most effective when back pressure is applied to the control wheel, putting most of the aircraft weight on the main wheels. In high wind conditions, particularly in strong cross-winds, it may be desirable to approach the ground at higher than normal speeds with partial or no flaps.

MOORING

The Cherokee should be moved on the ground with the aid of the nose wheel tow bax provided with each plane and secured in the baggage compartment. Tie downs may be securedto rings provided under each wing, and to the tail skid. The aileron and stabilator controls should be secured by looping the safety belt through the control wheel and pulling it tight. The rudder is held in position by its connections to the nose wheel steering, and normally does not have to be secured. The flaps are locked when in the full up position, and should be left retracted.

WEIGHT AND BALANCE

It is the responsibility of the owner and pilot to determine that the airplane remains within the allowable weight vs center of gravity envelope while in flight. For weight and balance data see the Airplane Flight Manual and Weight and Balance Form supplied with each airplane.

SECTION IV PERFORMANCE CHARTS

Take-off Distance vs Standard Altitude 20
Rate of Climb vs Standard Altitude. 21
True Airspeed vs Density Altitude (1950 lbs. gross wt.) 22
True Airspeed vs Density Altitude (2150 Ibs. gross wt.) 23
Rage vs Standard Altitude (1950 lbs . gross wt.) 23a
Range vs Standard Altitude (2150 lbs . gross wt.) 23 b
Power vs Altitude (1950 lbs . gross wt.) 24
Power vs Altitude (2150 lbs . gross wt.) 25
Landing Distance vs Standard Altitude 25a

PIPER CHEROKEE
 PA-28-140

PIPER CHEROKEE PA-28-140

RANGE, MILES

PIPER CHEROKEE
PA-28-140

ENGINE SPEED-R.PM.

PIPER CHEROKEE PA-28-140

SECTION V GENERAL MAINTENANCE

Tire Inflation 27
Battery Service 27
Brake Service 27
Landing Gear Service 28
Fuel and Oil Requirements 30
Care of Air Filter 31
Care of Windshield and Windows 31
Serial Number Plate 32
Leveling and Rigging 32

SECTION v

 GENERAL MAINTENANCE
tire inflation

For maximum sexvice from the tires on the Cherokee, keep the tires inflated to the proper pressure of 24 pounds for the main gear and 24 pounds for the nose wheel. Interchange the tires on the main wheels, if necessary, to produce even wear. All wheels and tires are balanced before original installation, and the relationship of the tire, tube and wheel should be maintained, if at all possible. Out of batance wheels can cause extreme vibration on take-off. In the installation of new components, it may be necessary to rebalance the wheel with the tires mounted.

BATTERY SERVICE

The 12 volt battery is located in a stainless steel container under the baggage compartment floox. The container should be drained occasionally by opening the rubber cap on the drain tube. Check the battery for proper fluid level (helow the baffle plates). Use a hydrometer to determine the density of the battery fluid.

If the battery is discharged, charge it before take-off as three volts are needed to excite the alternator. Rechange starting at a 4 amp rate and finishing with a 2 amp rate. Quick charges are not recommended.

BRAKE SERVICE

The brake system is filled with MLL-H-5606 (petroleum
base) hydraulic brake fluid. This should be checked at every 100 hour inspection and replenishod when necessary by filling the brake reservoir on the firewall to the indicated level. If the system as a whole has to be refilled with fluid, this should be done by filling with the fluid under pressure from the brake end of the system. This will eliminate aix from the system as it is being filled.

No adjustment of brake clearances is necessary on the Cherokce. If after extended service the brake blocks become worn excessively, they are easily replaced with new segments.

LANDING GEAR SERVICE

Main wheels axe easily removed by taking off the hub cap, axle nut, and the two bolts holding the brake segment in place, after which the wheel slips easily from the axle.

Tires are removed from the wheels by first deflating the tire, removing the three through bolts, and separating the wheel halves.

Landing gear oleo struts should be checked for proper strut exposures and fluid leaks. The required extensions for the strut when under normal static load (empty weight of airplane plus full fuel and oil) is 3.25 inches for the nose gear and 4.50 inches for the main gear. Should the strut exposure be below that required, it should be determined whether air or oil is required by first raising the airplane on jacks. Depress the valve core to allow air to escape from the strut housing chamber. Remove the filler plug and slowly raise the strut to full compression. If the strut has sufficient fluid it will be visible up to the bottom of the filler plug hole and will then only require proper inflation.

Should fluid be below the bottom of the filler plug hole, oil should be added. Replace the plug with valve core removed, attach a clear plastic hose to the valve stem of the filler plug and submerge the other end in a container of hydraulic fluid (MIL-H-5606). Fully compress and extend the strut several

times thus drawing fluid from the container and expelling air from the strut chamber. To allow fluid to enter the bottom chamber of the main gear strut housing, the torque link assembly must be disconnected to let the strut be extended a minimum of 10 inches. (The nose gear torque links need not be disconnected.) Do not allow the strut to extend more than 12 inches. When air bubbles cease to flow through the hose, compress the strut fully and againcheck fluid level. Reinstall the valve core and filler plug, and the main gear torque links if disconnected. Wit With fluid in the strut housing at the correct level, attack a strut pump to the air valve and with the airplane on the ground, inflate the oleo strut to the correct height.

In jacking the Cherokee for landing gear or other service, a jack kit (available through the Piper Aircraft Service Depart ment) should be used. This kit consists of two hydraulic jacks and a tail stand. At least 350 pounds of ballast should be placed on the base of the tail stand before jacking up the airplane. The hydraulic jacks should be placed under the jack points on the bottom of the wing and the airplane jacked up until the tail skid is at the right height to attach the tail stand. After attaching the tail stand, and adding the ballast, the jacking may be contimued until the airplane is at the height desired.

FUEL AND OIL REQUIREMENTS

Aviation grade 80/87 Octanc (minimum) fuel must be used in the Cherokee. The use of lower grades can cause serious engine damage in a very short period of time, and is considered of such importance that the engine warranty is invalidated by such use.

The oil capacity of the Lycoming O-320 sexies eugines is 8 quarts and the minimum safe quantity is 2 quarts. It is recommended that the oil be changed every 50 hours or sooner under unfavorable conditions. The following grades are recommended for the specified temperatures:

Average Ambient Air Temperature For Starting	Single Viscosity Grade	Multi-Viscosity Grades
Above $60^{\circ} \mathrm{F}$	SAE 50	SAE 40 or SAE 50
30° to $90^{\circ} \mathrm{F}$	SAE 40	SAE 40
0° to $70^{\circ} \mathrm{F}$	SAE 30	SAE 40 or 20W-30
Below $10^{\circ} \mathrm{F}$	SAE 20	SAE 20W -30

CARE OF AIR FILTER

The carburetorair filtermust be cleaned at least once every fifty hours. Under extremely adverse conditions of operation if may be necessary to clean the filter daily. Extra filtors are in expensive and a spare should be kept on hand and used as a rapi replacement.

The filtex manufacturer recommends that the filter be tap ped gemtly to remove dirt particles. Do not blow out with com pressed air.

CARE OF WINDSHIELD AND WINDOWS

A ccrtain amount of care is needed to keep the plexiglas windows clean and unmarred. The following procedure is rec ommended:

1. Flush with clean water and dislodge excess dirt, mud etc., with your hand.
2. Wash with mild soap and water. Use a soft cloth o sponge, do not rub.
3. Remove oil, grease or sealing compounds with a sof cloth and kerosene.
4. After cleaning, apply a thin coat of hard polishing wax Rub lightly with a soft cloth.
5. A severe scratch or mar may be removed by using jeweler's rouge to rub out the scratch, smoothing, and thenap plying wax.

SERIAL NUMBER PLATE

The serial number plate is located neax the stabilator on the left side of the airplane. Refer to this number for service or warranty matters.

LEVELING AND RIGGING

Leveling the Cherokee for purposes of weighing or rigging is accomplished as follows:

1. Partially withdraw two machine screws located immediately below the left front side window. These screws are leveling points and the airplane is longitudinally level when a level placed on the heads of these screws indicates level.
2. To put the airplane in a longitudinally level position on scales, first block the main gear oleos in the fully extended position, then deflate the nose wheel tire until the proper attitude is obtained. For rigging only, the airplane may be placed on jacks for leveling.
3. To level the airplane Iaterally, place a level ac ross the baggage compartment floor along the rear bulkhead.

Rigging: Although the fixed तlight surfaces on the Cherokee cannot be adjusted for rigging purposes, it may be necessary upon occasion to check the position of these surfaces. The movable surfaces all have adjustable stops, as well as adjustable turnbuckles on the cables or push-pull tubes, so that their range of travel can be altered. The positions and angular travels of the various surfaces are as follows:

1. Wings: 7° dihedral, 2° washout.
2. Stabilator Travel: 18° up, 2° down, tolerance $\pm 1^{\circ}$.
3. Fin should be vertical and in line with center of fuselage.
4. Aileron Travel: 30° up, 15° down, tolerance $\pm 2^{\circ}$.
5. Flap Travel: $10^{\circ}, 25^{\circ}, 40^{\circ}$, tolerance $\pm 2^{\circ}$.
6. Rudder Travel: 27° right and left, tolerance $\pm 2^{\circ}$.
7. Stabilator Tab Travel: 3° up, 12° down, tolerance $\pm 1^{\circ}$.

Cable tensions for the various controls are as follows.
Rudder: $40 \pm 5 \mathrm{lbs}$. Stabilator: $40 \pm 5 \mathrm{lbs}$,
Ailerons: $40 \pm 5 \mathrm{lbs}$. Stabilator Trim: $5 \pm 1 \mathrm{lb}$.

670424

саниени

INDEX

SECTION I
Specification Features: Page
Performance 1
Weights .1
Power Plant 2
Fuel and Oil 3
Baggage 3
Dimensions. 3
Landing Gear 3
SECTION II
Design Information: 5
Engine and Propelter 5
Structures 6
Landing Gear 6
Control System7
Fuel System 8
Electrical System 9
Heating and Ventilating System 10
Cabin Features 12
SECTION III
Operating Instructions: 13
Preflight 13
Starting 14
Warm-up 15
Ground Check 16
Take-off 16
Climb 17
Stalls 17
Cruising 17
Approach and Landing 18
Ground Handling and Mooring 19
Weight and Balance 19

INDEX (cont.)

SECTION IV Page
Performance Charts: 20
Take-off Distance vs Standard Altitude 20
Rate of Climb vs Standard Altitude 21
True Airspeed vs Density Altitude
(1950 lbs. gross weight) 22
True Airspeed vs Density Altitude
(2150 lbs. gross weight) 23
Range vs Standard Altitude (1950 lbs . gross wt.) 23a
Range vs Standard Altitude (2150 lbs . gross wt.) 23b
Power vs Altitude (1950 Ibs. gross weight) 24
Power vs Altitude (2150 lbs. gross weight) 25
Landing Distance vs Standard Altitude. 25a
SECTION V
General Maintenance: 27
Tire Inflation 27
Battery Service. 27
Brake Service 27
Landing Gear Service 28
Fuel and Oil Requirements 30
Care of Air Filter 31
Care of Windshield and Windows 31
Serial Number Plate. 32
Leveling and Rigging 32

